Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Per Med ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501284

RESUMO

Aim: Steroid-induced osteonecrosis of the femoral head (SONFH) is a severe complication following glucocorticoid therapy. This study aimed to identify the differential mRNA expression and investigate the molecular mechanisms of SONFH. Materials & methods: RNA sequencing was performed in eight SONFH patients, five non-SONFH patients and five healthy individuals. Results: A total of 1555, 3997 and 5276 differentially expressed mRNAs existed between the following combinations: SONFH versus non-SONFH, SONFH versus healthy subjects and non-SONFH versus healthy subjects. Increased ISM1 expression might contribute to a high risk of SONFH through antiangiogenesis. Decreased FOLR3 expression might affect the metabolism of homocysteine, leading to avascular necrosis of the femoral head. KCNJ2, which plays a pivotal role in regulating bone development, was also deregulated. Conclusion: ISM1, FOLR3 and KCNJ2 might be related to the occurrence of SONFH.

2.
Ageing Res Rev ; 87: 101931, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37031723

RESUMO

Metal homeostasis is critical to normal neurophysiological activity. Metal ions are involved in the development, metabolism, redox and neurotransmitter transmission of the central nervous system (CNS). Thus, disturbance of homeostasis (such as metal deficiency or excess) can result in serious consequences, including neurooxidative stress, excitotoxicity, neuroinflammation, and nerve cell death. The uptake, transport and metabolism of metal ions are highly regulated by ion channels. There is growing evidence that metal ion disorders and/or the dysfunction of ion channels contribute to the progression of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Therefore, metal homeostasis-related signaling pathways are emerging as promising therapeutic targets for diverse neurological diseases. This review summarizes recent advances in the studies regarding the physiological and pathophysiological functions of metal ions and their channels, as well as their role in neurodegenerative diseases. In addition, currently available metal ion modulators and in vivo quantitative metal ion imaging methods are also discussed. Current work provides certain recommendations based on literatures and in-depth reflections to improve neurodegenerative diseases. Future studies should turn to crosstalk and interactions between different metal ions and their channels. Concomitant pharmacological interventions for two or more metal signaling pathways may offer clinical advantages in treating the neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doenças Neurodegenerativas/metabolismo , Doença de Alzheimer/metabolismo , Doença de Parkinson/metabolismo , Canais Iônicos/metabolismo , Canais Iônicos/uso terapêutico , Homeostase
3.
Inflammopharmacology ; 31(2): 611-631, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36892679

RESUMO

Neurological symptoms are prevalent in both the acute and post-acute phases of coronavirus disease 2019 (COVID-19), and they are becoming a major concern for the prognosis of COVID-19 patients. Accumulation evidence has suggested that metal ion disorders occur in the central nervous system (CNS) of COVID-19 patients. Metal ions participate in the development, metabolism, redox and neurotransmitter transmission in the CNS and are tightly regulated by metal ion channels. COVID-19 infection causes neurological metal disorders and metal ion channels abnormal switching, subsequently resulting in neuroinflammation, oxidative stress, excitotoxicity, neuronal cell death, and eventually eliciting a series of COVID-19-induced neurological symptoms. Therefore, metal homeostasis-related signaling pathways are emerging as promising therapeutic targets for mitigating COVID-19-induced neurological symptoms. This review provides a summary for the latest advances in research related to the physiological and pathophysiological functions of metal ions and metal ion channels, as well as their role in COVID-19-induced neurological symptoms. In addition, currently available modulators of metal ions and their channels are also discussed. Collectively, the current work offers a few recommendations according to published reports and in-depth reflections to ameliorate COVID-19-induced neurological symptoms. Further studies need to focus on the crosstalk and interactions between different metal ions and their channels. Simultaneous pharmacological intervention of two or more metal signaling pathway disorders may provide clinical advantages in treating COVID-19-induced neurological symptoms.


Assuntos
COVID-19 , Doenças do Sistema Nervoso , Humanos , SARS-CoV-2 , Doenças do Sistema Nervoso/tratamento farmacológico , Sistema Nervoso Central
4.
Oxid Med Cell Longev ; 2023: 1649842, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846712

RESUMO

Traumatic brain injury (TBI), a kind of external trauma-induced brain function alteration, has posed a financial burden on the public health system. TBI pathogenesis involves a complicated set of events, including primary and secondary injuries that can cause mitochondrial damage. Mitophagy, a process in which defective mitochondria are specifically degraded, segregates and degrades defective mitochondria allowing a healthier mitochondrial network. Mitophagy ensures that mitochondria remain healthy during TBI, determining whether neurons live or die. Mitophagy acts as a critical regulator in maintaining neuronal survival and healthy. This review will discuss the TBI pathophysiology and the consequences of the damage it causes to mitochondria. This review article will explore the mitophagy process, its key factors, and pathways and reveal the role of mitophagy in TBI. Mitophagy will be further recognized as a therapeutic approach in TBI. This review will offer new insights into mitophagy's role in TBI progression.


Assuntos
Lesões Encefálicas Traumáticas , Mitofagia , Humanos , Mitofagia/fisiologia , Lesões Encefálicas Traumáticas/metabolismo , Mitocôndrias/metabolismo
5.
Front Pharmacol ; 13: 863677, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529430

RESUMO

Atherosclerosis (AS) features include progressive hardening and reduced elasticity of arteries. AS is the leading cause of morbidity and mortality. An increasing amount of evidence showed that epigenetic modifications on genes serve are a main cause of several diseases, including AS. Histone deacetylases (HDACs) promote the deacetylation at lysine residues, thereby condensing the chromatin structures and further inhibiting the transcription of downstream genes. HDACs widely affect various physiological and pathological processes through transcriptional regulation or deacetylation of other non-histone proteins. In recent years, the role of HDACs in vascular systems has been revealed, and their effects on atherosclerosis have been widely reported. In this review, we discuss the members of HDACs in vascular systems, determine the diverse roles of HDACs in AS, and reveal the effects of HDAC inhibitors on AS progression. We provide new insights into the potential of HDAC inhibitors as drugs for AS treatment.

6.
Front Pharmacol ; 13: 858676, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35517803

RESUMO

Acute kidney injury (AKI), a common and serious clinical kidney syndrome with high incidence and mortality, is caused by multiple pathogenic factors, such as ischemia, nephrotoxic drugs, oxidative stress, inflammation, and urinary tract obstruction. Cell death, which is divided into several types, is critical for normal growth and development and maintaining dynamic balance. Ferroptosis, an iron-dependent nonapoptotic type of cell death, is characterized by iron overload, reactive oxygen species accumulation, and lipid peroxidation. Recently, growing evidence demonstrated the important role of ferroptosis in the development of various kidney diseases, including renal clear cell carcinoma, diabetic nephropathy, and AKI. However, the exact mechanism of ferroptosis participating in the initiation and progression of AKI has not been fully revealed. Herein, we aim to systematically discuss the definition of ferroptosis, the associated mechanisms and key regulators, and pharmacological progress and summarize the most recent discoveries about the role and mechanism of ferroptosis in AKI development. We further conclude its potential therapeutic strategies in AKI.

7.
CNS Neurol Disord Drug Targets ; 21(8): 693-703, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34792016

RESUMO

BACKGROUND: Upregulation of mitochondrial E3 ubiquitin ligase 1 (Mul1) contributes to brain injury in ischemic stroke due to disturbance of mitochondrial dynamics, and bioinformatics analysis predicts that Mul1 is a potential target of Dipsacoside B. OBJECTIVE: The aim of the study was to explore whether Dipsacoside B can exert a beneficial effect on brain injury in the ischemic stroke rat via targeting Mul1. METHODS: The SD rat brains or PC12 cells were subjected to 2 h-ischemia or 8 h-hypoxia plus 24 h-reperfusion or 24 h-reoxygenation to establish the ischemic stroke rat model in vivo or in vitro, which were treated with Dipsacoside B at different dosages. The brain or PC12 cell injury, relevant protein levels and mitochondrial functions were measured by methods of biochemistry, flow cytometry or Western blot. RESULTS: The neurological dysfunction and brain injury (such as infarction and apoptosis) observed in the ischemic stroke rats were accompanied by increases in Mul1 and Dynamin-related protein 1 (Drp1) levels along with decreases in mitofusin 2 (Mfn2) level and ATP production. These effects were attenuated by Dipsacoside B. Consistently, cell injury (necroptosis and apoptosis) occurred in the PC12 cells exposed to hypoxia concomitant with the upregulation of Mul1 and Drp1 along with downregulation of Mfn2 and mitochondrial functions (such as increases in reactive oxygen species production and mitochondrial fission and decreases in mitochondrial membrane potential and ATP production).These phenomena were reversed in the presence of Dipsacoside B. CONCLUSION: Dipsacoside B can protect the rat brain against ischemic injury via inhibition of Mul1 due to the improvement of mitochondrial function.


Assuntos
Lesões Encefálicas , AVC Isquêmico , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Hipóxia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Ácido Oleanólico/análogos & derivados , Células PC12 , Ratos , Ratos Sprague-Dawley , Saponinas , Ubiquitina-Proteína Ligases/metabolismo
8.
Front Cardiovasc Med ; 8: 770574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938787

RESUMO

Vascular diseases, particularly atherosclerosis, are associated with high morbidity and mortality. Endothelial cell (EC) or vascular smooth muscle cell (VSMC) dysfunction leads to blood vessel abnormalities, which cause a series of vascular diseases. The mitochondria are the core sites of cell energy metabolism and function in blood vessel development and vascular disease pathogenesis. Mitochondrial dynamics, including fusion and fission, affect a variety of physiological or pathological processes. Multiple studies have confirmed the influence of mitochondrial dynamics on vascular diseases. This review discusses the regulatory mechanisms of mitochondrial dynamics, the key proteins that mediate mitochondrial fusion and fission, and their potential effects on ECs and VSMCs. We demonstrated the possibility of mitochondrial dynamics as a potential target for the treatment of vascular diseases.

9.
Oxid Med Cell Longev ; 2021: 3259963, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603595

RESUMO

The normal function of the mitochondria is crucial for most tissues especially for those that demand a high energy supply. Emerging evidence has pointed out that healthy mitochondrial function is closely associated with normal heart function. When these processes fail to repair the damaged mitochondria, cells initiate a removal process referred to as mitophagy to clear away defective mitochondria. In cardiomyocytes, mitophagy is closely associated with metabolic activity, cell differentiation, apoptosis, and other physiological processes involved in major phenotypic alterations. Mitophagy alterations may contribute to detrimental or beneficial effects in a multitude of cardiac diseases, indicating potential clinical insights after a close understanding of the mechanisms. Here, we discuss the current opinions of mitophagy in the progression of cardiac diseases, such as ischemic heart disease, diabetic cardiomyopathy, cardiac hypertrophy, heart failure, and arrhythmia, and focus on the key molecules and related pathways involved in the regulation of mitophagy. We also discuss recently reported approaches targeting mitophagy in the therapy of cardiac diseases.


Assuntos
Cardiopatias/patologia , Mitocôndrias Cardíacas/metabolismo , Mitofagia , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiopatias/tratamento farmacológico , Cardiopatias/metabolismo , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitofagia/efeitos dos fármacos , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Ubiquitina/metabolismo
10.
Front Pharmacol ; 12: 807413, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087408

RESUMO

Diabetes mellitus is a global public health challenge with high morbidity. Type 2 diabetes mellitus (T2DM) accounts for 90% of the global prevalence of diabetes. T2DM is featured by a combination of defective insulin secretion by pancreatic ß-cells and the inability of insulin-sensitive tissues to respond appropriately to insulin. However, the pathogenesis of this disease is complicated by genetic and environmental factors, which needs further study. Numerous studies have demonstrated an epigenetic influence on the course of this disease via altering the expression of downstream diabetes-related proteins. Further studies in the field of epigenetics can help to elucidate the mechanisms and identify appropriate treatments. Histone methylation is defined as a common histone mark by adding a methyl group (-CH3) onto a lysine or arginine residue, which can alter the expression of downstream proteins and affect cellular processes. Thus, in tthis study will discuss types and functions of histone methylation and its role in T2DM wilsed. We will review the involvement of histone methyltransferases and histone demethylases in the progression of T2DM and analyze epigenetic-based therapies. We will also discuss the potential application of histone methylation modification as targets for the treatment of T2DM.

11.
Eur J Pharmacol ; 861: 172617, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31430457

RESUMO

Mitochondrial dysfunctions contribute to brain injury in ischemic stroke while disturbance of mitochondrial dynamics results in mitochondrial dysfunction. Mitochondrial E3 ubiquitin ligase 1 (Mul1) involves in regulation of mitochondrial fission and fusion. This study aims to explore whether Mul1 contributes to brain injury in ischemic stroke and the underlying mechanisms. First, a rat ischemic stroke model was established by middle cerebral artery occlusion (MCAO), which showed ischemic injuries (increase in neurological deficit score and infarct volume) and upregulation of Mul1 in brain tissues. Next, Mul1 siRNAs were injected intracerebroventricularly to knockdown Mul1 expression, which evidently attenuated brain injuries (decrease in neurological deficit score, infarct volume and caspase-3 activity), restored mitochondrial dynamics and functions (decreases in mitochondrial fission and cytochrome c release while increase in ATP production), and restored protein levels of dynamin-related protein 1 (Drp1, a mitochondrial fission protein) and mitofusin2 (Mfn2, a mitochondrial fusion protein) through suppressing their sumoylation and ubiquitination, respectively. Finally, PC12 cells were cultured under hypoxic condition to mimic the ischemic stroke. Consistently, knockdown of Mul1 significantly reduced hypoxic injuries (decrease in apoptosis and LDH release), restored protein levels of Drp1 and Mfn2, recovered mitochondrial dynamics and functions (decreases in mitochondrial fission, mitochondrial membrane potential, reactive oxygen species production and cytochrome c release while increase in ATP production). Based on these observations, we conclude that upregulation of Mul1 contributes to brain injury in ischemic stroke rats and disturbs mitochondrial dynamics through sumoylation of Drp1 and ubiquitination of Mfn2.


Assuntos
Isquemia Encefálica/complicações , Encéfalo/patologia , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose , Hipóxia Celular , Modelos Animais de Doenças , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Técnicas de Silenciamento de Genes , Masculino , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Células PC12 , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/enzimologia , Sumoilação , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética , Regulação para Cima
12.
Biochem Biophys Res Commun ; 482(4): 1080-1087, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27913300

RESUMO

NADPH oxidases (NOX) - derived reactive oxygen species (ROS) contribute to oxidative injury in hypoxia-induced pulmonary arterial hypertension. This study aims to evaluate the status of NOX in endothelial progenitor cells (EPCs) under hypoxic condition and to determine whether NOX inhibitors could attenuate hypoxia-induced dysfunctions of EPCs. EPCs were isolated from peripheral blood of SD rats and subjected to hypoxia (O2/N2/CO2, 1/94/5) for 24 h. The cells were collected for ß-galactosidase or Hoechst staining, or for functional analysis (migration, adhesion and tube formation). The NOX expression, activity and H2O2 content in EPCs were measured. The results showed that hypoxia treatment promoted EPC senescence and apoptosis, accompanied by the deteriorated functions of EPCs (the reduced abilities in adhesion, migration and tube formation), as well as an increase in NOX2 and NOX4 expression, NOX activity and H2O2 production, these phenomena were attenuated by NOX inhibitors. Furthermore, administration of catalase could also improve the functions of hypoxia-treated EPCs. Based on these observations, we conclude that NOX-derived ROS contributes to the dysfunctions of EPCs under hypoxic condition. Thus, suppression of NOX may provide a novel strategy to improve endothelial functions in hypoxia-relevant diseases.


Assuntos
Células Progenitoras Endoteliais/metabolismo , Glicoproteínas de Membrana/antagonistas & inibidores , NADPH Oxidases/antagonistas & inibidores , Animais , Apoptose , Catalase/química , Adesão Celular , Hipóxia Celular , Movimento Celular , Senescência Celular , Peróxido de Hidrogênio/química , Masculino , Glicoproteínas de Membrana/metabolismo , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/metabolismo , Fenótipo , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , beta-Galactosidase/metabolismo
13.
Intern Med ; 55(10): 1279-86, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27181533

RESUMO

Objective Circulating microRNAs have been recognized as promising biomarkers for various diseases. The aim of the present study was to explore the potential role of circulating miR-107, miR-128b and miR-153 as non-invasive biomarkers in the diagnosis of ischemia stroke. Methods One hundred and fourteen ischemic stroke patients (61±11.3 years old) and 58 healthy volunteers (56±3.9 years old) matched for age and sex were enrolled in this study. Total RNA was isolated from plasma with TRIzol reagent. The circulating microRNAs levels were measured by quantitative real-time polymerase chain reaction. Results The circulating levels of miR-107, miR-128b and miR-153 significantly increased 2.78-, 2.13- and 1.83-fold in ischemia stroke patients in comparison to the healthy volunteers, respectively. Receiver operating characteristic (ROC) curves were analyzed using the SPSS software program and revealed the areas under the curve for circulating miR-107, miR-128b and miR-153 to be 0.97, 0.903 and 0.893 in ischemia stroke patients in comparison to healthy volunteers, respectively. The levels of circulating miR-107, miR-128b and miR-153 therefore positively correlated with the severity of stroke as defined by NIHSS classes. Conclusion Our results suggest that circulating miR-107, miR-128b and miR-153 might be used as potential novel non-invasive biomarkers for the diagnosis of ischemia stroke. However, future prospective trials in large-sized patient cohorts are needed before drawing any definitive conclusions.


Assuntos
Isquemia Encefálica/diagnóstico , Encéfalo/metabolismo , MicroRNAs/sangue , Biomarcadores/sangue , Encéfalo/diagnóstico por imagem , Isquemia Encefálica/sangue , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Curva ROC , Reação em Cadeia da Polimerase em Tempo Real
14.
Mitochondrion ; 28: 49-53, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27034206

RESUMO

Mitochondrial E3 ubiquitin ligase 1 (Mul1) is a multifunctional mitochondrial membrane protein with its RING domain exposed to the cytoplasm. On the one hand, Mul1 functions as a ubiquitin-ligase to ubiquitinate a bunch of signal molecules, such as mitofusin2 (Mfn2), Akt, p53 and ULK1, through its RING finger domain, leading to proteins degradation. On the other hand, Mul1 acts as a small ubiquitin-like modifiers (SUMO) E3 ligase to sumoylate certain proteins, such as dynamin-related protein 1 (Drp1), enhancing protein stabilization. Through the dual functions of ubiquitination and SUMOylation, Mul1 involves in regulation of many physiological and pathological processes, such as mitochondrial dynamics, cell growth, apoptosis and mitophagy. In addition, Mul1 can also directly activate or interact with some proteins, such as NF-κB and JNK, to take part in the regulation of cellular apoptosis. This review summarizes recent progress in relevant studies on the physiological and pathological functions of Mul1 and pays special attention to its role in regulation of mitochondrial dynamics.


Assuntos
Mitocôndrias/fisiologia , Dinâmica Mitocondrial , Ubiquitina-Proteína Ligases/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Sumoilação , Ubiquitinação
15.
Eur J Pharmacol ; 766: 91-8, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26420356

RESUMO

Recent studies uncovered that glutamate accumulation following cerebral ischemia-reperfusion (I/R) was related to the dysfunction of miR-107/glutamate transporter-1(GLT-1) pathway and magnesium lithospermate B (MLB) possesses the pharmacological activity of anti-excitotoxicity. This study aims to explore whether MLB is able to protect rat brain from excitatory neurotoxicity during I/R by modulating miR-107/GLT-1 pathway. Rats were subjected to 2h of cerebral ischemia following by 24h of reperfusion to establish an I/R injury model, which showed an increase in neurological deficit score, infarct volume and cellular apoptosis concomitant with glutamate accumulation, miR-107 elevation and GLT-1 down-regulation. Administration of MLB reduced I/R-induced cerebral injury accompanied by a reverse in glutamate accumulation, miR-107 and GLT-1 expression. Next, we examined the association of MLB with miR-107/GLT-1 pathway in a nerve cell hypoxia/reoxygenation (H/R) injury model. H/R treatment increased the nerve cells apoptosis concomitant with glutamate accumulation and miR-107 elevation, and suppressed GLT-1 expression, mimicking our in vivo findings. All these effects were reversed in the presence of MLB, confirming a strong correlation between MLB and miR-107/GLT-1 pathway. Based on these observations, we conclude that MLB is able to protect the rat brain from excitatory neurotoxicity during I/R through the regulation of miR-107/GLT-1 pathway.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , MicroRNAs/metabolismo , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Medicamentos de Ervas Chinesas/uso terapêutico , Transportador 2 de Aminoácido Excitatório/genética , Ácido Glutâmico/metabolismo , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Hipóxia/patologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
16.
Planta Med ; 81(15): 1361-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26252829

RESUMO

Salviaolate is a group of depside salts isolated from Danshen (a traditional Chinese herbal medicine), with ≥ 85 % of magnesium lithospermate B. This study aims to investigate whether salviaolate is able to protect the rat brain from ischemia/reperfusion injury and the underlying mechanisms. Rats were subjected to 2 h of cerebral ischemia and 24 h of reperfusion to establish an ischemia/reperfusion injury model. The neuroprotective effects of salviaolate at different dosages were evaluated. A dosage (25 mg/kg) was chosen to explore the neuroprotective mechanisms of salviaolate. Neurological function, infarct volume, cellular apoptosis, nicotinamide adenine dinucleotide phosphate-oxidase activity, and H2O2 content were measured. In a nerve cell model of hypoxia/reoxygenation injury, magnesium lithospermate B was applied. Cellular apoptosis, lactate dehydrogenase, nicotinamide adenine dinucleotide phosphate-oxidase activity, and H2O2 content were examined. Ischemia/reperfusion treatment significantly increased the neurological deficit score, infarct volume, and cellular apoptosis accompanied by the elevated nicotinamide adenine dinucleotide phosphate-oxidase activity and H2O2 content in the rat brains. Administration of salviaolate reduced ischemia/reperfusion-induced cerebral injury in a dose-dependent manner concomitant with a decrease in nicotinamide adenine dinucleotide phosphate-oxidase activity and H2O2 production. Magnesium lithospermate B (20 mg/kg) and edaravone (6 mg/kg, the positive control) achieved the same beneficial effects as salviaolate did. In the cell experiments, the injury (indicated by apoptosis ratio and lactate dehydrogenase release), nicotinamide adenine dinucleotide phosphate-oxidase activity and H2O2 content were dramatically increased following hypoxia/reoxygenation, which were attenuated in the presence of magnesium lithospermate B (10(-5) M), VAS2870 (nicotinamide adenine dinucleotide phosphate-oxidase inhibitor), or edaravone (10(-5) M). The results suggest that salviaolate is able to protect the brain from ischemia/reperfusion oxidative injury, which is related to the inhibition of nicotinamide adenine dinucleotide phosphate-oxidase and a reduction of reactive oxygen species production.


Assuntos
Benzofuranos/uso terapêutico , Isquemia Encefálica/prevenção & controle , Cinamatos/uso terapêutico , Depsídeos/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , NADPH Oxidases/antagonistas & inibidores , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Salvia miltiorrhiza/química , Animais , Antioxidantes/uso terapêutico , Benzoxazóis/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Células Cultivadas , China , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Masculino , Ratos , Ratos Sprague-Dawley , Triazóis/farmacologia , Ácido Rosmarínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA